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Low- and High-Dimension Limits of a 
Phase Separation Model 
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We study a simple zero-temperature model for phase separation of a binary 
alloy, in which nearest-neighbor interchange can occur if the fraction of AB 
pairs is not thereby increased. We present analytic results for the one-dimen- 
sional case and numerical results for the infinite dimensionality limit on a 
Cayley tree. In neither limit does the final fraction of AB pairs agree with the 
dimension-independent result found previously in d = 3, 4, 5. 

KEY WORDS: Phase separation; spinodal decomposition; simulation; non- 
ergodic processes. 

1. I N T R O D U C T I O N  

Levy, Reich, and Meakin  (1t and subsequently Meakin  and Reich (2~ have 
performed a zero temperature Monte  Carlo simulation of  spinodal  decom- 
posit ion in a 50-50 model  alloy. They commence  by generating a lattice of  
equal numbers  of  A and B atoms, either inserted at r a n d o m  or inserted in 
an alternating structure such that  each a tom has nearest neighbors  of  the 
opposite type. They consider several lattices in dimension d =  1 th rough  
d =  5. The stochastic reorganizat ion of  the 50-50 array of  a toms is carried 
out with the following rules: 

(1) A nearest-neighbor pair  of  a toms is selected at random. 

(2a) If  the exchange of  the pair of  a toms would result in enrichment  
of "good"  (AA or BB) nearest-neighbor pairs it is performed. 
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(2b) If the exchange would dilute good pairs it is never performed. 

(2c) If the exchange would cause neither enrichment nor dilution it 
is carried out with probability p. This third case corresponds to diffusion. 
References 1 and 2 consider only p = 1/2, but other values are under study 
(P. Meakin, private communication). 

For d>~ 2 with p > 0 the process usually never terminates, but even- 
tually becomes purely diffusive. Either d = 1 or p = 0 results in eventual ter- 
mination. In all cases the fraction B of "bad" AB bonds 
[B = NAB/(NAA + NBB -'k NAB)] appears numerically to approach a limit 
considerably greater than zero; complete phase separation (B--.0 as 
NA + Nu ~ oo ) is never achieved. For 3 ~< d ~< 5 on a hypercubic lattice with 
p=0 .5  the limiting B is (2) 0.2804+0.001 for an alternating start and 
0.274+0.003 for a random start. Note that S/Z in Refs. 1 and 2 
corresponds to (1 -B) /2 .  The values for d =  2 appear slightly different, (1) 
0.2820 + 0.0004 for an alternating start and 0.264 + 0.002 for a random 
start. The dimensionality independence is surprising and warrants further 
investigation. We have examined the one-dimensional case (Section 2) and 
the "infinite" dimensionality limit on a Cayley tree (Section 3). We consider 
only the case of an alternating start. 

Besides the intrinsic interest of this model, which mimics spinodal 
decomposition, it is an example of a physically relevant class of nonergodic 
Monte Carlo processes whose simplest properties (e.g., B) cannot be found 
by equilibrium consideration. Here the effective Hamiltonian is that of an 
Ising ferromagnet (with Kawasaki dynamics), which would show complete 
phase separation (B--, 0) at zero temperature in equilibrium. This is not 
seen and instead the evolution and final states depend crucially on the 
dynamics and on the starting state. Similar processes are found in spin 
glass models. 

2. ONE D I M E N S I O N  

We consider a one-dimensional chain of N sites connected into a ring. 
We first treat the p = 0 case of no diffusion. Any state of the chain may be 
specified in terms of the runs of like spins, called singles, doubles (two As 
surrounded by Bs, or vice versa), triples, etc. Starting in the alternating 
ABAB... state (Neven), after the first transition there are two adjacent 
doubles and N - 4  singles. 

The crucial observation is that the sequence 

Sn = double, n singles, double 
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evolves independently of its surroundings, provided its immediate 
neighbors are not singles. The proviso is true initially, where we have 
SN 4, and is preserved by the rules now discussed. For n ~> 4, S~ evolves in 
one of the following n - 1 equally likely ways: 

(triple, Sn_ 3) 

(So, S~_4) 

S n --~ 

(Sn_4, So) (for n > 4) 

(Sn_ 3, triple) 

The omitted sequences are of the form (Sp, Sq) with p + q = n - 4 .  $3 
evolves into (triple, So)or  the reverse, and $2 evolves into (triple, triple). 
$o, $1, and triples cannot evolve further. Let the bonds to the right of each 
atom in Sn be associated with S~, so that S~ is associated with 2 good and 
n + 2 bad bonds. Now let r~ (~<n + 2) be the average number of bad bonds 
remaining upon completion of S,s evolution. The rules lead immediately to 

r o = 2, rl = 3, r2 = 2, r 3 = 3 

and, for n >/4, 

1 ~ - 4  2 
r , =  ~ (rp+ (r.  3+1)  n - -1  r n - 4 - P ) + -ff"-~"l~ l 

p=O 

This may be reduced to the recurrence relation 

n r ~ + l - ( n - 1 ) r , = 2 r ~ _ 2  (n>~3) 

which generates all r,s. In the large system limit B is given by 

B = lim r ,_  4/N = 0.45090 (p = 0) 
N ~  

The result is easily obtained numerically, or by solving the differential 
equation for the generating function ~b(s) = Z r , S  n. 

The addition of diffusion (p >0)  spoils the independent evolution of 
each S,, and can generate sequences longer than triples. We have found no 
general solution, and comment that the dynamics may be expressed in 
terms of an unsolved four-femion Hamiltonian (using femion operators to 
create or annihilate bad bonds). However, the addition of an infinitesimal 
amount of diffusion (0 < p ~ 1) is easily treated because the evolution may 
then be divided into two stages. First the p---0 evolution occurs, leaving 
triples, So s, and Sis. Then the Sis evolve further via diffusion, each 
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eliminating two bad bonds. The number  of S~ s remaining after the first 
stage is given on average by qN-4, where q, can be shown to satisfy the 
same recurrence as r ,  for n >~ 3, and qo = 0, ql = 1, q2 = q3 = 0. Thus 

B =  lim (ru_4--2qu_4)/N=0.35132 ( 0 < p ~ l ) .  
N ~ c o  

This is already most  of the way from the p = 0 result to the p = 1/2 result 

B = 0.3355 + 0.0005 (p = 1/2) 

which we obtain by simulation. Reference 1 quotes B = 0.338 at p = 1/2. It 
seems that B is rather insensitive to p, as long as p > 0, although of course 
the completion time increases as lip. We also simulated the p = 0.01 and 
p = 1 cases, with results 

B = 0.3506 + 0.0005 (p = 0.001) 

B- -  0.3292 + 0.0005 ( p =  1) 

We found no significant size dependence above N =  1000. It  is clear that 
the d =  1 version of this process is very different from d =  2 through 5. 

3. C A Y L E Y  T R E E S  

A Cayley tree often plays the role of an infinite-dimensional lattice. We 
have therefore tried some simulations of the present model on a Cayley tree 
of coordination number  Z, with n generations starting from a central 
generation 0 site. We consider only p = I/2 and use an alternating start. We 
allow boundary pairs, between generations n -  1 and n, to interchange 
according to the same rule (Section 1) as for other pairs, even though the 
outermost  atoms have no generation n + 1 neighbors. The simulation is run 
for 100N steps past the last B-changing interchange observed, where N is 
the number of nearest-neighbor pairs, 

N= [ Z ( Z -  1)n--z]/(Z--2) - 1 

This gives good convergence for Z >~ 4; Z = 3 appears to need even longer 
runs for reliable results, and is excluded here. We repeat each (Z, n) case 
100 times and average the values obtained for B. 

Figure 1 shows our results for Z >~ 4, n ~> 4. We plot B - 1 / Z  versus 
1/N (labeled with N) because we find a leading 1/Z behavior for B. Error 
bars are derived from our 100 runs at each (Z, n). The limit of interest for 
representing an infinite-dimensional hypercubic lattice is 

Boo= lira lim B(Z,n) 
Z ~ o o  N ~  
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Fig. l. The fraction B of "bad" AB pairs, minus 1/Z, after running the dynamical process to 
completion on Cayley trees of coordinates number Z. The lines join points of the same Z, with 
n = 4, 5,... generations from right to left. The abscissa is linear in 1/N. 

The inner limit appears reasonably well converged and suggests Boo = 0 for 
the outer limit. In any case we can be confident in stating Boo < 0.01, imply- 
ing almost complete phase separation. If indeed the Cayley tree represents 
the d-~ oe limit of the finite d lattices the conjecture (z) that B is indepen- 
dent of d for d ~> 3 is thereby excluded. 

The result B~ I/Z is not hard to understand. For  large Z almost all 
the pairs are between generations n -  1 and n, and interchanging one of 
these for each generation n - 1  site leaves no bad pairs among the 
n - 2 : n  - 1 pairs, and a fraction l / Z -  1 bad among the n -  1 :n pairs. This 
gives B = 1/Z overall if the few pairs inside generation n -  2 are ignored. 
Our simulation results agree with this picture, particularly in that very few 
bad pairs are found among the n - 2 : n - 1  ones. Those pairs inside 
generation n - 2  have a much larger bad fraction, which appears to 
decrease toward a limit as N increases, the limit increasing with Z. We 
estimate B ~ > 0 . 5  for these inner pairs alone. Again, this excludes the 
d-independence conjecture. 

In summary, we have studied the d =  1 process analytically and by 
simulation, and the d ~ m Cayley tree by simulation. These limiting cases 
differ from the intermediate dimensions reported in Refs. 1 and 2. 
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